- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hazra, Ayan Deep (2)
-
Latosinska, Anna (2)
-
Modi, Shrey (2)
-
Morgan, Dane (2)
-
Wang, Ching-Wen (2)
-
Zhang, Jinming (2)
-
Polak, Maciej (1)
-
Polak, Maciej P (1)
-
Wang, Shanonan (1)
-
Wang, Shaonan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Accurate and comprehensive material databases extracted from research papers are crucial for ma- terials science and engineering, but their development requires significant human effort. With large language models (LLMs) transforming the way humans interact with text, LLMs provide an oppor- tunity to revolutionize data extraction. In this study, we demonstrate a simple and efficient method for extracting materials data from full-text research papers leveraging the capabilities of LLMs com- bined with human supervision. This approach is particularly suitable for mid-sized databases and requires minimal to no coding or prior knowledge about the extracted property. It offers high recall and nearly perfect precision in the resulting database. The method is easily adaptable to new and superior language models, ensuring continued utility. We show this by evaluating and comparing its performance on GPT-3 and GPT-3.5/4 (which underlie ChatGPT), as well as free alternatives such as BART and DeBERTaV3. We provide a detailed analysis of the method’s performance in extracting sentences containing bulk modulus data, achieving up to 90% precision at 96% recall, depending on the amount of human effort involved. We further demonstrate the method’s broader effectiveness by developing a database of critical cooling rates for metallic glasses over twice the size of previous human curated databases.more » « less
-
Polak, Maciej; Modi, Shrey; Latosinska, Anna; Zhang, Jinming; Wang, Ching-Wen; Wang, Shanonan; Hazra, Ayan Deep; Morgan, Dane (, arXivorg)
An official website of the United States government

Full Text Available